- **9**. The device of claim **1**, wherein the first and second connecting members are formed in a contiguous board that has an opening defined therein, the board being sufficiently flexible to allow movement of the first and second connecting members relative to one another in fore-aft tilt angle.
- 10. The device of claim 9, wherein the first and second wheels extend above the platform through the opening.
- 11. The device of claim 1, wherein the first and second front subsections are configured to move relative to one another in fore-aft tilt angle, and movement of the first and second front subsections relative to one another in fore-aft tilt angle causes movement of the first and second connecting members relative to one another.
- 12. The device of claim 1, wherein the first and second rear subsections are configured to move relative to one another in fore-aft tilt angle, and movement of the first and second rear subsections relative to one another in fore-aft tilt angle causes movement of the first and second connecting members relative to one another.
 - 13. An auto-balancing transportation device, comprising: a platform having first and second front subsections and first and second rear subsections, and a first connecting member located between the first front and rear subsections and a second connecting member located between the second front and rear subsections;
 - a first wheel, a first drive motor, and a first sensor associated with the first connecting member;
 - a second wheel, a second drive motor, and a second sensor associated with the second connecting member;
 - a control circuit that drives the first drive motor toward auto-balancing the first connecting member based on data from the first sensor and that drives the second drive motor toward auto-balancing the second connecting member based on data from the second sensor; and

- wherein the first connecting member is capable of fore-aft tilt angle movement while the fore-aft tilt angle of the second connecting member is unchanged.
- 14. The device of claim 13, wherein the second connecting member is capable of fore-aft tilt angle movement while the fore-aft tilt angle of the first connecting member is unchanged.
- 15. The device of claim 13, wherein the platform is greater in longitudinal dimension than lateral dimension.
- 16. The device of claim 13, wherein the first and second wheels are wholly below the platform.
- 17. The device of claim 13, wherein the first and second wheels are in part below the platform and in part above the platform.
- 18. The device of claim 13, wherein the first and second connecting members are formed in a contiguous board that has an opening defined therein, the board being sufficiently flexible to allow movement of the first and second connecting members relative to one another in fore-aft tilt angle.
- 19. The device of claim 18, wherein the first and second wheels extend above the platform through the opening.
 - 20. The device of claim 13, having at least one of: the first and second front subsections configured to move relative to one another in fore-aft tilt angle, and movement of the first and second front subsections relative to one another in fore-aft tilt angle causing movement of the first and second connecting members relative to one another; and
 - the first and second rear subsections configured to move relative to one another in fore-aft tilt angle, and movement of the first and second rear subsections relative to one another in fore-aft tilt angle causing movement of the first and second connecting members relative to one another.

* * * * *